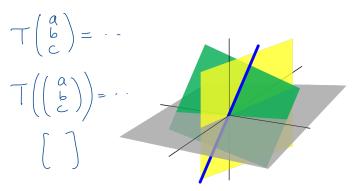
Algèbre Linéaire

Cours du 10 décembre

Jérôme Scherer



A.11 La multiplication dans \mathbb{F}_4

Le produit est donnée par le produit des polynômes. Nous avions calculé le produit $t \cdot t$ par division euclidienne, on peut aussi simplement utiliser le fait que $t^2 + t + 1 = 0$ dans \mathbb{F}_4 :

$$t \cdot t = t^2 = t^2 + t + 1 + t + 1 = t + 1$$
 et $t(t+1) = t^2 + t + 1 + 1 = 1$

•	0	1	t	t + 1
0	0	0	0	0
1	0	1	t	t+1
t	0	t	t + 1	1
t + 1	0	t + 1	1	t

Les autres produits manquants s'effectuent de la même manière.

A.11 LA MULTIPLICATION DANS \mathbb{F}_4

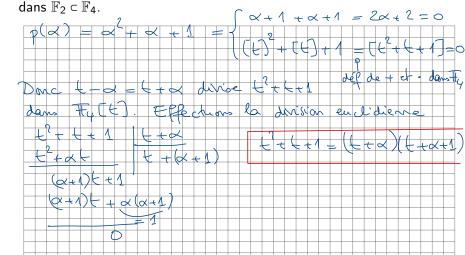
Pour ne pas confondre l'indéterminée t des polynômes et l'élément t donné comme reste de division, on choisit d'appeler α le reste t, ou plus précisément la classe [t] de t dans "l'anneau des polynômes $\mathbb{F}_2[t]$ modulo $t^2 + t + 1$ ".

- ① Comme ensemble $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$.
- L'addition est celle des polynômes, chaque élément est son propre opposé.
- **1** La multiplication est celle des polynômes, modulo t^2+t+1 , en particulier $\alpha^2=\alpha+1$. On a donc aussi $\mathbb{F}_4=\{0,1,\alpha,\alpha^2\}$.

$$\alpha \cdot \alpha^2 = \alpha^3 = 1$$

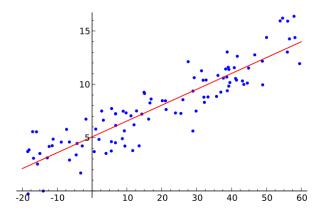
A.11 LE POLYNÔME $t^2 + t + 1 \in \mathbb{F}_4[t]$

Le polynôme $p(t)=t^2+t+1\in\mathbb{F}_2[t]$ est irréductible, mais on peut aussi le voir comme un polynôme de $\mathbb{F}_4[t]$, car ses coefficients sont



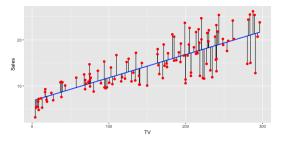
6.6 Régression linéaire : objectif

On se donne un "nuage" de points dans le plan, donnés par leurs coordonnées $(x_1, y_1), \ldots, (x_n, y_n)$ et on aimerait trouver la droite qui donne la meilleures approximation :



6.6.1 FORMALISATION...

On cherche la droite d'équation y = at + b la plus proche des points $(x_1, y_1), \ldots, (x_n, y_n)$ dans le sens où les distances verticales entre les points et la droite sont minimisées (voici un exemple tiré de UC Business Analytics R Programming Guide) :



Autrement dit les distances $|ax_n + b - y_n|$ doivent être les plus petites possibles.

6.6.1 ... AVEC LES MOINDRES CARRÉS

Pour ne pas devoir discuter de valeurs absolues, on minimise les carrés de ces distances. On cherche donc les nombres a et b tels que

$$\sum_{i=1}^{n} (ax_n + b - y_n)^2$$

est minimal. Par conséquent le système suivant de n équations

$$\begin{cases} ax_1 + b = y_1 \\ \dots \\ ax_n + b = y_n \end{cases}$$

est incompatible (à moins d'un coup de chance) et on cherche la meilleure solution (\hat{a}, \hat{b}) au sens des moindres carrés!

6.6.2 Forme matricielle

On écrit le système ci-dessus sous forme matricielle

$$\begin{pmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

et on utilise l'équation normale pour résoudre :

$$\left(\begin{array}{cc} \sum (x_i)^2 & \sum x_i \\ \sum x_i & n \end{array}\right) \left(\begin{array}{c} \hat{a} \\ \hat{b} \end{array}\right) = \left(\begin{array}{c} \sum x_i y_i \\ \sum y_i \end{array}\right)$$

REMARQUE

Toutes les sommes sont indicées par un entier i entre 1 et n.

6.6.3 Droite de régression linéaire

REMARQUE

En général, dans la pratique, les colonnes de x_i et celle de 1 ne sont pas proportionnelles dans la matrice A, la solution est alors unique : Le déterminant de la matrice A^TA est non nul.

Ainsi
$$D = n \sum (x_i)^2 - (\sum x_i)^2 \neq 0$$
. Alors

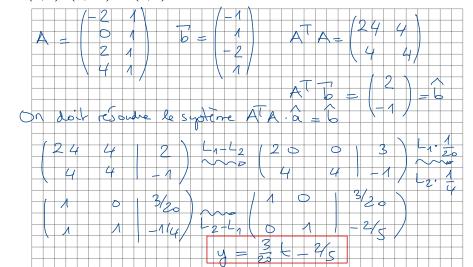
$$\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} n & -\sum x_i \\ -\sum x_i & \sum (x_i)^2 \end{pmatrix} \begin{pmatrix} \sum x_i y_i \\ \sum y_i \end{pmatrix}$$

THÉORÈME

La solution au sens des moindres carrés est donnée par $\hat{a} = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{D} \text{ et } \hat{b} = \frac{\left[\sum (x_i)^2\right](\sum y_i) - (\sum x_i)(\sum x_i y_i)}{D}.$

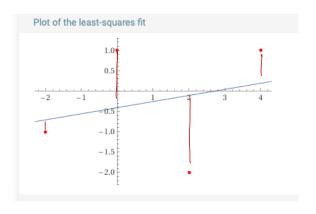
6.6.3 Exemple

On cherche la droite de régression linéaire pour les points (-2,-1), (0,1), (2,-2) et (4,1)



6.6.3 Exemple

On cherche la droite de régression linéaire pour les points (-2,-1), (0,1), (2,-2) et (4,1) avec Wolfram Alpha :



6.7.0 Debriefing sur le produit scalaire

Nous avons utilisé jusqu'ici le produit scalaire standard dans \mathbb{R}^n . Les propriétés du produit scalaire font que d'associer à une paire de vecteurs \overrightarrow{u} et \overrightarrow{v} le produit $\overrightarrow{u} \cdot \overrightarrow{v}$ est une opération linéaire en chaque variable.

De plus le produit scalaire est commutatif : $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$. On dit aussi que le produit scalaire est symétrique.

6.7.1 Formes bilinéaires

Ceci nous motive à introduire un nom à d'autres applications de deux variables, définies en général sur un espace vectoriel arbitraire.

DÉFINITION

Soit V un espace vectoriel. Une forme bilinéaire symétrique est une application $V \times V \to \mathbb{R}$ qui associe à tout couple de vecteurs (u,v) un nombre réel $\langle u,v \rangle$ tel que

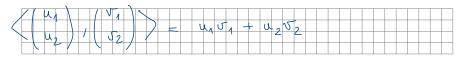
- commutativité : $\langle u, v \rangle = \langle v, u \rangle$;
- ② distributivité : $\langle u + u', v \rangle = \langle u, v \rangle + \langle u', v \rangle$;
- 3 linéarité : $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$;

REMARQUE

Une forme linéaire est une application linéaire $V \to \mathbb{R}$.

6.7.1 Formes bilinéaires, exemples

Le produit scalaire standard de \mathbb{R}^2 est une forme bilinéaire symétrique.



Il y a de nombreuses autres formes bilinéaires symétriques. Par exemple

$$\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$

$$\left(\begin{matrix} v_1 \\ v_2 \end{matrix}\right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$

$$\left(\begin{matrix} v_1 \\ v_2 \end{matrix}\right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$

$$\left(\begin{matrix} v_1 \\ v_2 \end{matrix}\right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$

6.7.2 Matrices symétriques

PROPOSITION

On représente une forme bilinéaire symétrique sur \mathbb{R}^n par une matrice symétrique A carrée de taille $n \times n$.

Preuve. On pose $a_{ij} = \langle e_i, e_j \rangle = \langle e_j, e_i \rangle = a_{ji}$ si bien que

$$\langle u, v \rangle = u^T A v$$

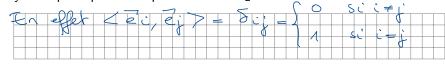
En effet $u = u_1e_1 + \dots u_ne_n$ et $v = v_1e_1 + \dots + v_ne_n$. Alors

$$\langle u,v\rangle = \sum_i \sum_j u_i v_j \langle e_i,e_j\rangle = \sum_i \sum_j u_i v_j a_{ij} = \sum_i u_i (\sum_j a_{ij} v_j)$$

$$= \sum_i u_i (Av)_i = u^T Av$$

6.7.2 Matrices symétriques, exemples

Le produit scalaire standard de \mathbb{R}^2 est une forme bilinéaire symétrique représentée par la matrice I_2 .



La forme bilinéaire symétrique

$$\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$

$$\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix}$$

6.7.3 Espaces préhilbertiens

Le produit scalaire euclidien définit aussi une norme :

$$\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2 \ge 0.$$

Nous arrivons à la notion de produit scalaire dans le sens large.

DÉFINITION

Soit V un espace vectoriel. Un produit scalaire est une forme bilinéaire symétrique $V \times V \to \mathbb{R}$ telle que

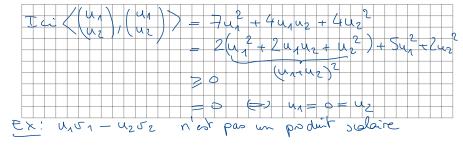
- commutativité : $\langle u, v \rangle = \langle v, u \rangle$ pour tous $u, v \in V$;
- ② distributivité : $\langle u+u',v\rangle=\langle u,v\rangle+\langle u',v\rangle$ pour tous $u,u',v\in V$;
- 3 linéarité : $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$ pour tous $u, v \in V$ et $\alpha \in \mathbb{R}$;
- $\langle u, u \rangle \ge 0$ et on à l'égalité si et seulement si u = 0.

6.7.2 Produits scalaires, exemples

Le produit scalaire standard de \mathbb{R}^2 est un produit scalaire : c'est une forme bilinéaire symétrique et $\langle \overrightarrow{u}, \overrightarrow{u} \rangle = \overrightarrow{u}^T I_2 \overrightarrow{u} = u_1^2 + u_2^2 \ge 0$.

La forme bilinéaire symétrique est aussi un poduit sulaire

$$\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) = 7u_1v_1 + 2u_1v_2 + 2u_2v_1 + 4u_2v_2$$



6.7.4 Exemples: Polynômes et fonctions

Un espace vectoriel muni d'un produit scalaire est appelé espace préhilbertien

1 Polynômes. Dans \mathbb{P}_n on pose (par exemple)

$$\langle p,q\rangle = \int_{-1}^{1} p(t)q(t)dt$$

Ainsi \mathbb{P}^n est un espace préhilbertien.

6.7.4 Exemples: Polynômes et fonctions

Un espace vectoriel muni d'un produit scalaire est appelé espace préhilbertien

1 Polynômes. Dans \mathbb{P}_n on pose (par exemple)

$$\langle p,q\rangle = \int_{-1}^{1} p(t)q(t)dt$$

Ainsi \mathbb{P}^n est un espace préhilbertien.

② Fonctions réelles. Dans $\mathcal{C}^{\infty}_{\ell-1,1}(\mathbb{R})$ on pose (par exemple)

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

6.7.4 Exemples: Polynômes et fonctions

Un espace vectoriel muni d'un produit scalaire est appelé espace préhilbertien

Output Polynômes. Dans \mathbb{P}_n on pose (par exemple)

$$\langle p,q\rangle = \int_{-1}^{1} p(t)q(t)dt$$

Ainsi \mathbb{P}^n est un espace préhilbertien.

2 Fonctions réelles. Dans $\mathcal{C}^{\infty}(\mathbb{R})$ on pose (par exemple)

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

Ainsi $C^{\infty}(\mathbb{R})$ est un espace préhilbertien.

6.7.4 Exemple: les polynômes

Dans \mathbb{P}_n on pose

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt$$

- $\langle 1, 1 \rangle = \int_{-1}^{1} 1 dt = 2$;
- ② $\langle 1, t \rangle = \int_{-1}^{1} t dt = 0$; Ainsi les polynômes 1 et t sont orthogonaux.
- **3** $\langle t, t \rangle = \int_{-1}^{1} t^2 dt = 2/3;$

Dans \mathbb{P}_1 , ce produit scalaire est représenté par la matrice $\begin{pmatrix} 2 & 0 \\ 0 & 2/3 \end{pmatrix}$.

6.7.4 Exemple: les polynômes

Dans \mathbb{P}_n on pose

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt$$

Nous avons vu que (1,t) forme une base orthogonale de \mathbb{P}_1 . Si nous choisissons la base canonique $(1, t, t^2)$ de \mathbb{P}_2 , on calcule encore

•
$$\langle 1, t^2 \rangle = \int_{-1}^1 t^2 dt = t^3/3 \mid_{-1}^1 = 2/3;$$

•
$$\langle t, t^2 \rangle = \int_{-1}^1 t^3 dt = t^4/4 \Big|_{-1}^1 = 0$$
;

•
$$\langle t^2, t^2 \rangle = \int_{-1}^1 t^4 dt = t^5/5 \mid_{-1}^1 = 2/5.$$

6.7.4 LES POLYNÔMES DE LEGENDRE

La matrice qui représente ce produit scalaire de \mathbb{P}_2 est la matrice dont les coefficients sont les produits scalaires calculés ci-dessus :

$$A = \begin{pmatrix} 2 & 0 & 2/3 \\ 0 & 2/3 & 0 \\ 2/3 & 0 & 2/5 \end{pmatrix}$$

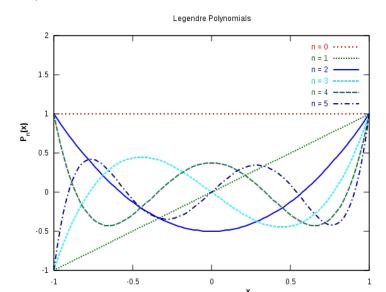
Cela signifie que le produit scalaire $\langle p(t), q(t) \rangle$ se calcule en effectuant le produit matriciel

$$(p(t))_{Can}^T A(q(t))_{Can}$$

La base canonique n'est pas orthogonale. Le procédé de Gram-Schmidt permet de la rendre orthogonale : $(1, t, t^2 - 1/3)$, ici 1/3 est la projection orthogonale de t^2 sur $\text{Vect}\{1, t\}$.

6.7.4 LES SIX PREMIERS POLYNÔMES DE LEGENDRE

Wikipedia:



6.7.5 Application : Séries de Fourier

Une fonction périodique (un signal, une onde, etc.) peut être approximée ou décomposée en une combinaison linéaire de fonctions périodiques élémentaires :

- \bullet $\cos(kx)$ où k est un entier naturel,
- \circ sin(kx) où k est un entier naturel.

Ces fonctions forment une base orthogonale de l'espace vectoriel des polynômes trigonométriques, muni du produit scalaire donné par

$$\langle f, g \rangle = \int_0^{2\pi} f(t)g(t)dt$$

Chapitre 7. Matrices symétriques

produit scalaire standard.

DÉFINITION

Une matrice carrée A est symétrique si $A^T = A$, i.e. $a_{ij} = a_{ji}$.

Exemples. Les matrices diagonales sont symétriques, mais aussi les matrices de la forme B^TB puisque le coefficient (i,j) est $\overrightarrow{b}_i \cdot \overrightarrow{b}_j = \overrightarrow{b}_j \cdot \overrightarrow{b}_j$.

THÉORÈME

Soit A une matrice symétrique. Soient \overrightarrow{u} un vecteur propre de A pour la valeur propre λ et \overrightarrow{v} un vecteur propre de A pour une autre valeur propre μ . Alors \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

7.1 PREUVE astrue est de colaler AUII 7.(2,5 compatiblité u emme raisonemen Ponchonne pas (e revillat

7.1.1 Exemple

La matrice
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 est symétrique. On calcule

7.1.2 Orthodiagonalisation

DÉFINITION

Une matrice carrée A est diagonalisable par un changement de base orthonormée ou orthodiagonalisable s'il existe une matrice P orthogonale telle que P^TAP est diagonale.

THÉORÈME

Une matrice A est orthodiagonalisable si et seulement si elle est symétrique.

Exemple. Considérons la matrice
$$A = \begin{pmatrix} 7 & -4 & 4 \\ -4 & 5 & 0 \\ 4 & 0 & 9 \end{pmatrix}$$
.

Alors $c_A(t) = -(t-1)(t-7)(t-13)$. Les espaces propres sont donc des droites perpendiculaires deux à deux.

7.1.2 Exemple

On a trois vecteurs propres unitaires
$$\begin{pmatrix} 2/3 \\ 2/3 \end{pmatrix}$$
, $\begin{pmatrix} 1/3 \\ -2/3 \end{pmatrix}$ et $\begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}$. $\begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}$. $\begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}$ $\begin{pmatrix} 2/3 \\ -1/3$

7.1.3 Théorème spectral

THÉORÈME SPECTRAL

Soit A une matrice symétrique. Alors

- A admet n valeurs propres réelles, compte tenu de leur multiplicité.
- **2** Pour toute valeur propre λ on a $\operatorname{mult}(\lambda) = \dim E_{\lambda}$.
- **3** Si $\lambda \neq \mu$, alors $E_{\lambda} \perp E_{\mu}$.
- A est orthodiagonalisable.

7.1.4 Exemple. Considérons la matrice
$$A = \begin{pmatrix} 4 & 1 & 3 & 1 \\ 1 & 4 & 1 & 3 \\ 3 & 1 & 4 & 1 \\ 1 & 3 & 1 & 4 \end{pmatrix}$$
.

7.1.4 EXEMPLE 3 3 43-1 3 Ф 3 h 4 0 Φ 0